2 Bayesian Filters
All filters can be expressed in a Bayesian form.
Important
Kalman filters are a special case of the more general Bayesian filter formulation
Coming soon…
Asch, Mark. 2022. A Toolbox for Digital Twins: From Model-Based to Data-Driven. Philadelphia, PA: Society for Industrial; Applied Mathematics. https://doi.org/10.1137/1.9781611976977.
Asch, Mark, Marc Bocquet, and Maëlle Nodet. 2016. Data Assimilation: Methods, Algorithms, and Applications. Philadelphia, PA: Society for Industrial; Applied Mathematics. https://doi.org/10.1137/1.9781611974546.
Calvello, Edoardo, Sebastian Reich, and Andrew M. Stuart. 2022. “Ensemble Kalman Methods: A Mean Field Perspective.” arXiv (to appear in Acta Numerica 2025). http://arxiv.org/abs/2209.11371.
Carrillo, J. A., F. Hoffmann, A. M. Stuart, and U. Vaes. 2024a. “Statistical Accuracy of Approximate Filtering Methods.” https://arxiv.org/abs/2402.01593.
———. 2024b. “The Mean Field Ensemble Kalman Filter: Near-Gaussian Setting.” https://arxiv.org/abs/2212.13239.
Dashti, Masoumeh, and Andrew M. Stuart. 2015. “The Bayesian Approach to Inverse Problems.” In Handbook of Uncertainty Quantification, edited by Roger Ghanem, David Higdon, and Houman Owhadi, 1–118. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-11259-6_7-1.
Huang, Daniel Zhengyu, Jiaoyang Huang, Sebastian Reich, and Andrew M Stuart. 2022. “Efficient Derivative-Free Bayesian Inference for Large-Scale Inverse Problems.” Inverse Problems 38 (12): 125006. https://doi.org/10.1088/1361-6420/ac99fa.
Iglesias, Marco A, Kody J H Law, and Andrew M Stuart. 2013. “Ensemble Kalman Methods for Inverse Problems.” Inverse Problems 29 (4): 045001. https://doi.org/10.1088/0266-5611/29/4/045001.
James, G., D. Witten, T. Hastie, and R. Tibshirani. 2021. An Introduction to Statistical Learning with Applications in R. Second Edition. Springer-Verlag New York. https://doi.org/10.1007/978-1-0716-1418-1.
Law, Kody, Andrew Stuart, and Konstantinos Zygalakis. 2015. Data Assimilation: A Mathematical Introduction. Vol. 62. Texts in Applied Mathematics. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-20325-6.
Reich, Sebastian, and Colin Cotter. 2015. Probabilistic Forecasting and Bayesian Data Assimilation. Cambridge University Press.
Sanita Vetra-Carvalho, Lars Nerger, Peter Jan van Leeuwen, and Jean-Marie Beckers. 2018. “State-of-the-Art Stochastic Data Assimilation Methods for High-Dimensional Non-Gaussian Problems.” Tellus A: Dynamic Meteorology and Oceanography 70 (1): 1–43. https://doi.org/10.1080/16000870.2018.1445364.
Särkkä, S., and L. Svensson. 2023. Bayesian Filtering and Smoothing. 2nd ed. Institute of Mathematical Statistics Textbooks. Cambridge University Press. https://doi.org/10.1017/9781108917407.