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Introduction



Direct and inverse problems

y=f(x:0)

Direct given 6, compute y (easy)
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Direct and inverse problems
y =f(x;0)

Direct given 6, compute y (easy)

Inverse given y, compute § (hard)
where
- f is an operator/equation/system
- x is the independent variable

- 0 is the parameter/feature

-y is the measurement/dependent variable
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Uncertainty is everywhere

- the observations are uncertain,

y =f(x;0)+¢,

where £ is a random variable, or more generaly a
stochastic process...
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Uncertainty is everywhere

- the observations are uncertain,

y =f(x;0)+¢,

where £ is a random variable, or more generaly a
stochastic process...
- the model f is uncertain:

- unknown unknowns,

- uncertain material properties

- uncertain geometry, boundary conditions, input signals,
etc.
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Bayesian inversion

Bayes’ theorem:
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Bayesian inversion

Bayes’ theorem:

P(y | 9)P(9)
P(6 _ V7)Y
@1y) PO
- solves the inverse problem, 8" =" f~'(y)
- and provides uncertainty quantification!

For reasonable accuracy of the posterior, we need a good
exploration of the prior and likelihood, which implies a large
number of simulations and/or measurements for the
evaluation of a very high-dimensional integral...
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Classical inversion

- use the model to generate measurements, ¥ = f(x, é)
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Classical inversion

- use the model to generate measurements, y = f(X,é)

- define a suitably regularized cost function,
F(8) = g (|| — y||) with a function-space norm

- minimize the cost function

0* = argmin F(f),
0

subject to (PDE) constraint.
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Classical inversion

- use the model to generate measurements, ¥ = f(x, é)

- define a suitably regularized )
F(8) = g (|| — y||) with a function-space norm

the cost function

0* = argmin F(A),
0

subject to (PDE) constraint.

ill-posed problem with local mimima, requires computation
of a gradient, needs regularization, does not deal well with
noise and uncertainty
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Solutions exist

Bayesian
MCMC methods, Bayesian optimization
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Solutions exist

Bayesian
MCMC methods, Bayesian optimization

Classical
adjoint-state methods, quasi-Newton, regularization
techniques

- But even with these, the inverse problem is
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Machine Learning



2 key properties

- Universal approximation
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FCNN - architecture
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NN - neuron activation
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y =0 (Wx+b), fora single hidden layer.
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Universal approximation: functions

Theorem (Cybenko 1989)
If o is any continuous sigmoidal function, then finite sums
G(x) = Y )y oyo (v; - x + 6;) are dense in C(lg).
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Universal approximation: functions

Theorem (Cybenko 1989)

If o is any continuous sigmoidal function, then finite sums
G(x) = Y )y oyo (v; - x + 6;) are dense in C(lg).

Theorem (Pinkus 1999 )

Letm; € Z% i =1,...,s, and set m = max; [m'|. Suppose that
o € C™(R), not polynomial. Then the space of single hidden
layer neural nets,

M(U):span{a(w~x+b):WERd, beR},

is dense in C™-M*(RY) = n¢_ C™ (RY).
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Universal approximation: operators

Theorem (Chen, Chen 1995)

Suppose o is continuous, non-polynomial, X is a Banach
space, K1 C X, K, ¢ RY are compact sets, V is compact in
C(Ky), G Is continuous operator from V into C(K3). Then, for
any e > 0, there exist positive integers m, n, p, constants CL,

557 Qk Cr e R, wy € Rd7 Xj € Ky, such that

ZZCU Zgu X} +0k o(Wg-y+C)| <e

R=1 i=1

forallueV,yeKk.
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Automatic differentiation

- Training/learning = finding the coefficients, w; ;, that
minimize the training loss.
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Automatic differentiation

- Training/learning = finding the coefficients, w; ;, that
minimize the training loss.

- This minimization is done by a stochastic gradient method.

- The gradient is computed by AD, where the ouput is

differentiated with respect to the weights, based on
Leibniz's rule.

Fact (Darve, 2021)

Reverse-mode automatic differentiation is mathematically
equivalent to the adjoint-state method, and the gradients
obtained are the same.
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4+1 approaches

- surrogate models

13/49



4+1 approaches

- surrogate models (data-driven)

13/49



4+1 approaches

- surrogate models (data-driven)

- physics constrained neural networks

13/49



4+1 approaches

- surrogate models (data-driven)

- physics constrained neural networks (data +
physics-driven)

13/49



4+1 approaches

- surrogate models (data-driven)

- physics constrained neural networks (data +
physics-driven)

- operator learning

13/49



4+1 approaches

- surrogate models (data-driven)

- physics constrained neural networks (data +
physics-driven)

- operator learning (data-driven + system identification)

13/49



4+1 approaches

- surrogate models (data-driven)

- physics constrained neural networks (data +
physics-driven)

- operator learning (data-driven + system identification)

- automatic differentiation for gradient computations only

13/49



4+1 approaches

- surrogate models (data-driven)

- physics constrained neural networks (data +
physics-driven)

- operator learning (data-driven + system identification)

- automatic differentiation for gradient computations only

- combinations of the above
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- More and more software is becoming available...

- “Commercial”:
- MODULUS by NVIDIA
- DEEPXDE by Karniadakis (Brown, U. Penn.)?
- Academic:
- PINN and it's numerous extensions/improvements (behind
DEEPXDE and MODULUS)
- DeepONet (behind DEEPXDE)
- Fourier Neural Operators (FNO)
- ADCME framework (AD)
- many, many others...

"https://developer.nvidia.com/modulus
’https://github.com/lululxvi/deepxde
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Machine Learning

Surrogate Models (SUMO)



Elementary, data-driven models

Definition

Surrogate models, also known as response surfaces,
black-box models, metamodels, or emulators, are simplified
approximations of more complex, higher order models. These
models are used to map input-data to output-data, when the
actual relationship between the two is unknown or
computationally too expensive to evaluate.
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Elementary, data-driven models

Definition

Surrogate models, also known as response surfaces,
black-box models, metamodels, or emulators, are simplified
approximations of more complex, higher order models. These
models are used to map input-data to output-data, when the
actual relationship between the two is unknown or
computationally too expensive to evaluate.

- ML and regression technigques commonly used:

- random forest,
- SVM,
- BNs and NNs.

15/49



SUMO flowchart

Simulations
Design
y=f(z;0) Output
parameters v ' .. .
0, b ° ' A (1
' training
0, ! Y2
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Machine Learning

PINN et cie.



- learn the solution
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- learn the solution

- learn the operator
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Learn the Solution: PINN

IDEA:

replace traditional numerical discretization methods—FDM,
FEM—by a neural network that learns an approximate
solution.
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Learn the Solution: PINN

IDEA:

replace traditional numerical discretization methods—FDM,
FEM—by a neural network that learns an approximate
solution.

HOW?

constrain the NN to minimize an augmented loss that
includes the PDE, boundary and initial conditions, in addition
to the usual loss function over the NN parameters (weights
and biases).
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PINN: formulation

Let F = 0 be the PDE, B = 0 the boundary conditions,
then the PINN loss is

L(0;T) = wrLs(6; Tr) + wpLp (0, Tp),
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PINN: formulation

Let F = 0 be the PDE, B = 0 the boundary conditions,

| =0 the
inversion conditions, then the PINN loss is

‘C(Q’ A; T) = Wf[’f(ev A; 7}) + Wb'cb(e)‘; 77)) + W,’»C,‘(@, A 77)

* where

L5(8:T7) = IF(@,x N5
Lo(0;Tp) = IIB(U )||§

xeT;

and x are the training points, { the approximate solution, A the
inversion coefficients

- solution, {6*, \*} = argming , L(6, \; T)
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PINN: error analysis

- error analysis can been derived3*, in terms of

3Lu, Karniadakis, SIAM Review, 2021.
“Mishra, Molinaro; arXiv:2006.16144v2.
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PINN: error analysis

- error analysis can been derived3*, in terms of
- optimization error e, = ||l — ur||
- generalization error eg = ||[Ur — UFx||
- approximation error eq = ||Uux — U]

3Lu, Karniadakis, SIAM Review, 2021.
“Mishra, Molinaro; arXiv:2006.16144v2.
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PINN: error analysis

- error analysis can been derived3*, in terms of
- optimization error e, = ||l — ur||
- generalization error eg = ||[Ur — UFx||
- approximation error eq = ||Uux — U]
- then
e=|lUr—ull <eo+eg+eq

3Lu, Karniadakis, SIAM Review, 2021.
“Mishra, Molinaro; arXiv:2006.16144v2.
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Example: the heat equation

IBVP for heat equation
Compute u(x,t): Q x [0, T] — R such that

au(x,t)

5t — V- (AX)Vu(x,t)) = f(x,t) in x (0,T), (1)

( ) - gD( 7t) on aD X (O,T),
—AX)Vu(x,t) - n =gr(x,t) on dr x (0,T),
u(x,0) = up(x) forxe.

Note that A(x) is, in general, a tensor (matrix) with elements
Ajj-
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Note that A(x) is, in general, a tensor (matrix) with elements
Ajj-

: given A\, compute u.
: given u, compute \.
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PINN for the heat equation

_________________________

i(et) — gp(et) - —r{loss) " G)

% (2,t) - gn(u,z.t)

_________________________

[Credit: Lu, Karniadakis, SIAM Review, 2021]

- use FCNN to approximate u at the selected points x, with
training data at residual points 7r and 7,
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% (2,t) - gn(u,z.t)

_________________________

[Credit: Lu, Karniadakis, SIAM Review, 2021]

- use FCNN to approximate u at the selected points x, with
training data at residual points 7r and 7,
- use AD to compute derivatives for the PDE and the

boundary/initial conditions
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PINN for the heat equation

_________________________

_________________________

i) — goot) (DGR

% (2,t) - gn(u,z.t)

_________________________

[Credit: Lu, Karniadakis, SIAM Review, 2021]

- use FCNN to approximate u at the selected points x, with
training data at residual points 7r and 7,

- use AD to compute derivatives for the PDE and the
boundary/initial conditions

- minimize the augmented, weighted loss function o)



PINN for inverse problems

- NO modification of the NN
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PINN for inverse problems

- NO modification of the NN

- just augment the parameter vector in the loss function to
include the sought-for coefficients, A, by including a
supplementary loss, £;(0, A, 7))

- that's it, folks...
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PINN pros

- mesh-free (only requires residual points where the
solution is sought)
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PINN pros

- mesh-free (only requires residual points where the
solution is sought)

- strong (differential) form avoids discretization, stability,
numerical integration errors

- leverages AD that is much better than other differentiation
methods, especially in higher dimensions

- can deal with noisy/uncertain data

- can use mini-batch techniques for better convergence,
especially in inverse problems

- can achieve incredible speed-ups once trained, for
subsequent evaluations - order 10° to 10*

24149



PINN cons

- terrible optimization problem... though new solutions
appear, almost daily—see arXiv
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PINN cons

- terrible optimization problem... though new solutions
appear, almost daily—see arXiv

- network architecture/size is very problem dependent

- convergence sensitive to NN initialization, requiring some
sort of CV or at least a batch of random repeats

- requires hyperparameter tuning: size, learning rate,
number of residual points (no free lunch...)
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PINN: conclusions

- recommended for simple PDEs, in geometrically simple
domains
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PINN: conclusions

- recommended for simple PDEs, in geometrically simple
domains

- useful for initial, feasibility studies, especially for inverse
problems

- must perform extensive hyperparameter tuning
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Learn the Operator: operator nets

- Use the Universal Operator Approximation Theorem...

)/) ZZCU Zéu XJ +‘9k U(Wk'y+C/?)’<6,

k=1 i=1 trunk

branch

where G is the solution operator, u is an input function, x;
are “sensor” points, y are random points where we
evaluate the output function G(u).
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Learn the Operator: operator nets

- Use the Universal Operator Approximation Theorem...

)/) ZZCU Zéu XJ +‘9k U(Wk'y+C/?)’<6,

k=1 i=1 trunk

branch

where G is the solution operator, u is an input function, x;
are “sensor” points, y are random points where we
evaluate the output function G(u).

- 2 main contenders:

- DeepONet
- Fourier Neural Operators (FNO)

- - aspecial case of DeepONet
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DeepONet architecture

Branch network

e

.4.
S

o o
\.%‘

Trunk network

/C

&) — G(u)(y)

N
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- Branch (FCNN, ResNET, CNN, etc.) and trunk networks
(FCNN) are merged by an inner product.

29/49



- Branch (FCNN, ResNET, CNN, etc.) and trunk networks
(FCNN) are merged by an inner product.

- Prediction of a function u evaluated at points y is then
given by
q
Zb;? u X y +bo
\V./

k=1 branch trunk
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- Branch (FCNN, ResNET, CNN, etc.) and trunk networks
(FCNN) are merged by an inner product.
- Prediction of a function u evaluated at points y is then

given by
q

ZE: br(u \~V—l4—bo

branch trunk
- Training weights and biases, 6, computed by minimizing
the loss (mini-batch by Adam, single-batch by L-BFGS)

N P ' ‘ 4
£ol®) = 135 3 32 o(u® ) - 6|
i=1 j=1
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Operator nets: pros and cons

+ Pros:
- relatively fast training (compared to PINN)
- can overcome the curse of dimensionality (in some cases...)
- suitable for multiscale and multiphysics problems

- Cons:

- no guarantee that physics is respected
- require large training sets of paired input-output
observations (expensive!)
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DeepONet + PINN = PI-DeepONet

- We can combine the two, to get the best of both worlds

L(0) = ws L5 (Go(u)(y)) + WpLp(Go(U)(y)) + WoLo(Ge(u)(y))
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DeepONet + PINN = PI-DeepONet

- We can combine the two, to get the best of both worlds

L(0) = ws L5 (Go(u)(y)) + WpLp(Go(U)(y)) + WoLo(Ge(u)(y))

- Results?
- no need for paired input-ouput observations, just samples
of the input function and BC/IC (self-supervised learning)
- respects the physics
- improved predictive accuracy
- ideal for parametric PDE studies—optimization, parameter
estimation, screening, etc.

>Wang, Wang, Bhouri, Perdikaris. arXiv:210310974v1, arXiv:2106.05384,
arXiv:2110.01654, arXiv:211013297
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Pl-DeepONet

DeepONet

Branch Net

Minimize

Trunk Net
,

[Credit: Wang, Wang, Perdikaris; arXiv, 2021]
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Machine Learning

Automatic Differentiation (AD)



- Used in all (D)NN algorithms to compute the network
parameters/coefficients 8 = {w, b}
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- Used in all (D)NN algorithms to compute the network
parameters/coefficients 8 = {w, b}

- Compute 8 by minimizing a loss function L(@), based on
training pairs, using a stochastic gradient descent method.

- Gradient computed by backpropagation = reverse-mode
AD.

- Observation: reverse-mode AD is equivalent to the
adjoint-state method, a well-known approach for solving
PDE-constrained inverse problems.

- Proposition: use AD to solve inverse probelms

- Pros: AD is robust, scalable, accurate, flexible and efficient
(can be parallelized over GPUs).

- Cons: need to incorporate/constrain the respect of the

physics...
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AD: Physics constrained learning

Problem formulation:

+ Given observations/measurements u®® = {u(x;)};cz of u
at the locations x = {x;}
- Estimate the parameters @ by minimizing a loss function
2
L(6) = Hu(x) il
subject to F(u;6) = 0.
- If @ = 0(x), then it can be modeled by a NN...
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AD: Physics constrained learning

Problem formulation:

+ Given observations/measurements u®® = {u(x;)};cz of u
at the locations x = {x;}

- Estimate the parameters 6 by minimizing a loss function

2

L(6) = Hu(x) il

subject to F(u;6) = 0.
- If 0 = 0(x), then it can be modeled by a NN...

Idea
To incorporate the physics constraint in the minimization
problem we use the implicit function theorem and the
chain-rule to calculate the gradient of the loss function with
respect to all the parameters—inversion and NN
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Application

The physical problem



ADSIL: Sperm whale monitoring
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Sperm whale model
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Sperm whale model




Inverse problem

For the elasto-acoustic wave propagation model

Lluym)=f, inQ
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Inverse problem

For the elasto-acoustic wave propagation model
Lluym)=f, inQ
- Given: recorded signals, u°?®(x, t) at points {x;} € Qo
- Estimate:

- material properties, m;(x), i = 1,2,3,4 in each region ;
- location and form of the initial source pulse f(x, t).

37149



Application

Classical inversion by adjoint method



- formulation - see Ferrari, 2020.

- Implementation of inversion — TBC.
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Application

Machine learning inversions



- start with AD, using NN for the pulse shape

- continue with PI-DeepONet, for example.
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Thank you!



Reserve




Reserve

DeepONet



deepOnet formulation

- Parametric, linear/nonlinear operator plus IBC (IBVP)

- where

- u €U is the input function (parameters),
- s € Sisthe hidden, solution function

- If 3 solution s = s(u) € S to the IBVP, then we can define
the solution operator G: U — S by
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deepOnet formulation I

- Approximate the solution map G by a DeepONet Gy
q

Z br(u v-i—bo

branch trunk

where 0 represents all the trainable weights and biases,
computed by minimizing the loss at a set of P random
output points {yj}f:1

P
= 522 160(0)3) s
J=1

and s(y;) is the PDE solution evaluated at P locations in
the domain of G(u)

)
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deepOnet formulation Il

- To obtain a vector output, a stacked version is defined by
repeated sampling over i =1,..., N, giving the overall
operator loss

N P

£o(60) = 575 30 30 [60(u) ) - s

i=1 j=1

2
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Pl-deepOnet

- Train by minimizing the composite loss
L(0) = Lo(0) + L(9),

where
- the operator loss is as above for deepOnet, or using the IBC

Lo(0) = # i i ‘B (u(i)(xl_(i)% Gg(u(/))(y}(f)))‘

=1 j=1

2

- the physics loss is computed using the operator network
approximate solution

2400~ g = 2[0 (406 60060)

- This is self-supervised, and does not require paired
input-output observations!
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Reserve

Inverse problem and AD



AD: Inverse problem formulation

- Given a physical relation
F(u;8) =0 (2)
represented by an IBVP, or other functional relationship,
with
- u the physical quantity
- @ the (material/medium) properties/parameters
- Inverse Problem is defined as:
- Given observations/measurements of u at the locations
x = {Xi}
U™ = {u(x)}iez
- Estimate the parameters @ by minimizing a
loss/objective/cost function

L(8) = [|u(x) — u™||;

subject to (2). 44]49



AD: Physics constrained learning

- If @ = 0(x), model it by a NN

- Express numerical scheme for approximating the PDE (2)
as a computational graph G(0)

- Use reverse-mode AD (aka. backpropagation) to compute
the gradient of L with respect to 8 and the NN coefficients
(weights and biases)

- Minimize by a suitable gradient algorithm

- Adam, SGD (1st order)
- L-BFGS (quasi-Newton)
- trust-region (2nd order)
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AD: Computing the gradient

- Optimization problem: ming L(u) subject to F(0,u) = 0.

- Suppose we have a computational graph for u = G(6).

- Then [(#) = L (G(9)) and by the IFT we can compute the
gradient with respect to 6,

- first of F,
oF  0FoG _ 96 _ [oF] ' oF
00  ouon 00 ou 00

- then of L, by the chain rule,

oL  aLoG AL {aFT OF

20 dudg  oulou| 90

- The first derivative is obtained directly from the loss
function, the second and third by reverse-mode AD
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Reserve

Wave propagation model



Acoustic-elastic wave equation

- In the fluid regions, Q¢, we will solve the acoustic wave
equation system,

ov )
pa =-Vp inQfx [OvT]a
88[; = —pc®V-v in Q% [0,T]. (3)

- In the solid regions, €, we will solve the elastic wave
equation system,

8V, - 80'/} .
8t p 87 in Q5 x [0, T],
80' s E 8\/ 8\/ .
tU — ZZ ijRL < 5 8)(;1) in Qg x [0,T].  (4)
k:1 =
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Wave equation: source and IBC

- The acoustic source will be simulated as a forcing term,
f(x,t), on the right-hand side of the pressure equation (3),
or (4), depending on whether it is located in the fluid or
solid regions, respectively.

- To complete this system, we add the following boundary
conditions:

- On the exterior, fluid boundary, an absorbing boundary
condition on p.

- On the interior boundaries, between different materials,
interface conditions that are described below.

- Finally, the initial conditions are set equal to zero for p, v
and o since a forcing function is used.
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Adjoint-state system

- Cost function to be minimized,

1 T
D=3 [ [lu-urBava

where

2p+ A A A o 0 o

A 2u+ A A 0 0 o

fe A A 2u+X 0 0 0
0 0 0 2 0 0

0 0 0 0 2z O

0 0 0 0 0 2

- Gradient of J can be expressed in terms of XA and u as

V(A / / < 4)\22 7% n,v|R*17 > dvdt,

=1 j=3

VHJ(M) = /O /Q < 2MI6D2V|R*T] > dVdt.
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