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Introduction



Direct and inverse problems

y = f (x; θ)

Direct given θ, compute y (easy)
Inverse given y, compute θ (hard)

where

• f is an operator/equation/system
• x is the independent variable
• θ is the parameter/feature
• y is the measurement/dependent variable
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Uncertainty is everywhere

• the observations are uncertain,

y = f (x; θ) + ξ,

where ξ is a random variable, or more generaly a
stochastic process...

• the model f is uncertain:
• unknown unknowns,
• uncertain material properties
• uncertain geometry, boundary conditions, input signals,
etc.
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Bayesian inversion

Bayes’ theorem:

P(θ | y) = P(y | θ)P(θ)
P(y)

• solves the inverse problem, θ ” = ” f−1(y)
• and provides complete uncertainty quantification!

(Too) high cost
For reasonable accuracy of the posterior, we need a good
exploration of the prior and likelihood, which implies a large
number of simulations and/or measurements for the
evaluation of a very high-dimensional integral...
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Classical inversion

• use the model to generate measurements, ŷ = f (x, θ̂)
• define a suitably regularized cost function,
F(θ) = g (‖ŷ − y‖) with a function-space norm

• minimize the cost function

θ∗ = argmin
θ

F(θ̂),

subject to (PDE) constraint.

Difficulties
ill-posed problem with local mimima, requires computation
of a gradient, needs regularization, does not deal well with
noise and uncertainty
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• define a suitably regularized cost function,
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• define a suitably regularized cost function,
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Solutions exist

Bayesian
MCMC methods, Bayesian optimization

Classical
adjoint-state methods, quasi-Newton, regularization
techniques

• But even with these, the inverse problem is hard.

6/49



Solutions exist

Bayesian
MCMC methods, Bayesian optimization

Classical
adjoint-state methods, quasi-Newton, regularization
techniques

• But even with these, the inverse problem is hard.

6/49



Solutions exist

Bayesian
MCMC methods, Bayesian optimization

Classical
adjoint-state methods, quasi-Newton, regularization
techniques

• But even with these, the inverse problem is hard.

6/49



Machine Learning



2 key properties

• Universal approximation
• Automatic differentiation
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FCNN - architecture

input
layer

hidden layers
output
layer
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NN - neuron activation
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a(0)2

a(0)3

a(0)4
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a(1)m
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a(1)2

a(1)1
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w1,nw1,n

...

...

= σ
(
w1,0a(0)0 + w1,1a(0)1 + . . .+ w1,na(0)n + b(0)1

)
= σ

( n∑
i=1

w1,ia
(0)
i + b(0)1

)

a(1)1
a(1)2
...
a(1)m

 = σ



w1,0 . . . w1,n
w2,0 . . . w2,n
...

. . .
...

wm,0 . . . wm,n



a(0)1

a(0)2
...

a(0)n

+


b(0)1

b(0)2
...

b(0)m




a(1) = σ

(
W(0)a(0) + b(0)

)
y = σ (Wx+ b) , for a single hidden layer.
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Universal approximation: functions

Theorem (Cybenko 1989)
If σ is any continuous sigmoidal function, then finite sums
G(x) =

∑N
j=1 αjσ

(
yj · x + θj

)
are dense in C(Id).

Theorem (Pinkus 1999 )
Let mi ∈ Zd, i = 1, . . . , s, and set m = maxi

∣∣mi∣∣ . Suppose that
σ ∈ Cm(R), not polynomial. Then the space of single hidden
layer neural nets,

M(σ) = span
{
σ(w · x+ b) : w ∈ Rd, b ∈ R

}
,

is dense in Cm1,...,ms
(Rd) .

= ∩si=1C
mi
(Rd).
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Universal approximation: operators

Theorem (Chen, Chen 1995)
Suppose σ is continuous, non-polynomial, X is a Banach
space, K1 ⊂ X, K2 ⊂ Rd are compact sets, V is compact in
C(K1), G is continuous operator from V into C(K2). Then, for
any ε > 0, there exist positive integers m, n, p, constants cik,
ξkij, θ

k
i , ζk ∈ R, wk ∈ Rd, xj ∈ K1, such that∣∣∣∣∣∣G(u)(y)−

p∑
k=1

n∑
i=1

cki σ

 m∑
j=1

ξkiju(xj) + θki

σ (wk · y + ζk)

∣∣∣∣∣∣ < ε

for all u ∈ V, y ∈ K2.
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Automatic differentiation

• Training/learning = finding the coefficients, wi,j, that
minimize the training loss.

• This minimization is done by a stochastic gradient method.
• The gradient is computed by AD, where the ouput is
differentiated with respect to the weights, based on
Leibniz’s rule.

Fact (Darve, 2021)
Reverse-mode automatic differentiation is mathematically
equivalent to the adjoint-state method, and the gradients
obtained are the same.
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4+1 approaches

• surrogate models

(data-driven)

• physics constrained neural networks

(data +
physics-driven)

• operator learning

(data-driven + system identification)

• automatic differentiation for gradient computations only
• combinations of the above
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Software

• More and more software is becoming available...
• “Commercial”:

• MODULUS1 by NVIDIA
• DEEPXDE by Karniadakis (Brown, U. Penn.)2

• Academic:
• PINN and it’s numerous extensions/improvements (behind
DEEPXDE and MODULUS)

• DeepONet (behind DEEPXDE)
• Fourier Neural Operators (FNO)
• ADCME framework (AD)
• many, many others...

1https://developer.nvidia.com/modulus
2https://github.com/lululxvi/deepxde
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Machine Learning

Surrogate Models (SUMO)



Elementary, data-driven models

Definition
Surrogate models, also known as response surfaces,
black-box models, metamodels, or emulators, are simplified
approximations of more complex, higher order models. These
models are used to map input-data to output-data, when the
actual relationship between the two is unknown or
computationally too expensive to evaluate.

• ML and regression techniques commonly used:
• random forest,
• SVM,
• BNs and NNs.
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SUMO flowchart
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Machine Learning

PINN et cie.



2 approaches

• learn the solution
• learn the operator
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Learn the Solution: PINN

IDEA:
replace traditional numerical discretization methods—FDM,
FEM—by a neural network that learns an approximate
solution.

HOW?
constrain the NN to minimize an augmented loss that
includes the PDE, boundary and initial conditions, in addition
to the usual loss function over the NN parameters (weights
and biases).
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PINN: formulation

Let F = 0 be the PDE, B = 0 the boundary conditions,

I = 0 the
inversion conditions,

then the PINN loss is

L(θ; T ) = wfLf (θ; Tf ) + wbLb(θ, Tb),
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PINN: formulation

Let F = 0 be the PDE, B = 0 the boundary conditions, I = 0 the
inversion conditions, then the PINN loss is

L(θ, λ; T ) = wfLf (θ, λ; Tf ) + wbLb(θλ; Tb) + wiLi(θ, λ; Ti)

• where

Lf (θ; Tf ) = ‖F(û, x, λ)‖22
Lb(θ; Tb) = ‖B(û, x)‖22

Li(θ, λ, Ti) =
1
|Ti|

∑
x∈Ti

‖I(û, x)‖22

and x are the training points, û the approximate solution, λ the
inversion coefficients

• solution, {θ∗, λ∗} = argminθ,λ L(θ, λ; T )
19/49



PINN: error analysis

• error analysis can been derived34, in terms of
• optimization error eo = ‖ûT − uT ‖
• generalization error eg = ‖uT − uF‖
• approximation error ea = ‖uF − u‖

• then
e .
= ‖ûT − u‖ ≤ eo + eg + ea

3Lu, Karniadakis, SIAM Review, 2021.
4Mishra, Molinaro; arXiv:2006.16144v2.
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Example: the heat equation

IBVP for heat equation
Compute u(x, t) : Ω× [0, T] → R such that

∂u(x, t)
∂t

−∇ · (λ(x)∇u(x, t)) = f (x, t) in × (0,T), (1)

u(x, t) = gD(x, t) on ∂D × (0,T),

−λ(x)∇u(x, t) · n = gR(x, t) on ∂R × (0,T),

u(x, 0) = u0(x) for x ∈ .

Note that λ(x) is, in general, a tensor (matrix) with elements
λij.

• Direct problem: given λ, compute u.
• Inverse problem: given u, compute λ.
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PINN for the heat equation

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

212 LU LU, XUHUI MENG, ZHIPING MAO, AND GEORGE EM KARNIADAKIS

Procedure 2.1 The PINN algorithm for solving differential equations.

Step 1 Construct a neural network \^u(x;\bfittheta ) with parameters \bfittheta .
Step 2 Specify the two training sets \scrT f and \scrT b for the equation and boundary/initial

conditions.
Step 3 Specify a loss function by summing the weighted L2 norm of both the PDE

equation and boundary condition residuals.
Step 4 Train the neural network to find the best parameters \bfittheta \ast by minimizing the

loss function \scrL (\bfittheta ; \scrT ).

x

t

σ

σ

...

σ

σ

σ

...

σ

û

NN(x, t;θ)
∂
∂t

∂2

∂x2

∂û
∂t − λ∂2û

∂x2

PDE(λ)

I

∂
∂n

û(x, t)− gD(x, t)

∂û
∂n (x, t)− gR(u,x, t)

BC & IC

Loss θ∗

Tf

Tb

Minimize

Fig. 1 Schematic of a PINN for solving the diffusion equation \partial u
\partial t

= \lambda \partial 2u
\partial x2 with mixed boundary

conditions (BC) u(x, t) = gD(x, t) on \Gamma D \subset \partial \Omega and \partial u
\partial \bfn 

(x, t) = gR(u, x, t) on \Gamma R \subset \partial \Omega . The
initial condition (IC) is treated as a special type of boundary condition. \scrT f and \scrT b denote
the two sets of residual points for the equation and BC/IC.

functions using AD, which is conveniently integrated in machine learning packages
such as TensorFlow [1] and PyTorch [43].

In the next step, we need to restrict the neural network \^u to satisfy the physics
imposed by the PDE and boundary conditions. In practice, we restrict \^u on some
scattered points (e.g., randomly distributed points, or clustered points in the domain
[37]), i.e., the training data \scrT = \{ x1,x2, . . . ,x| \scrT | \} of size | \scrT | . In addition, \scrT comprises
two sets, \scrT f \subset \Omega and \scrT b \subset \partial \Omega , which are the points in the domain and on the
boundary, respectively. We refer to \scrT f and \scrT b as the sets of ``residual points.""

To measure the discrepancy between the neural network \^u and the constraints,
we consider the loss function defined as the weighted summation of the L2 norm of
residuals for the equation and boundary conditions:

(2.2) \scrL (\bfittheta ; \scrT ) = wf\scrL f (\bfittheta ; \scrT f ) + wb\scrL b(\bfittheta ; \scrT b),

where

\scrL f (\bfittheta ; \scrT f ) =
1

| \scrT f | 
\sum 
x\in \scrT f

\bigm\| \bigm\| \bigm\| \bigm\| f \biggl( 
x;

\partial \^u

\partial x1
, . . . ,

\partial \^u

\partial xd
;

\partial 2\^u

\partial x1\partial x1
, . . . ,

\partial 2\^u

\partial x1\partial xd
; . . . ;\bfitlambda 

\biggr) \bigm\| \bigm\| \bigm\| \bigm\| 2
2

,

\scrL b(\bfittheta ; \scrT b) =
1

| \scrT b| 
\sum 
x\in \scrT b

\| \scrB (\^u,x)\| 22,
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• use FCNN to approximate u at the selected points x, with
training data at residual points Tf and Tb

• use AD to compute derivatives for the PDE and the
boundary/initial conditions

• minimize the augmented, weighted loss function 22/49
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Fig. 1 Schematic of a PINN for solving the diffusion equation \partial u
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= \lambda \partial 2u
\partial x2 with mixed boundary

conditions (BC) u(x, t) = gD(x, t) on \Gamma D \subset \partial \Omega and \partial u
\partial \bfn 

(x, t) = gR(u, x, t) on \Gamma R \subset \partial \Omega . The
initial condition (IC) is treated as a special type of boundary condition. \scrT f and \scrT b denote
the two sets of residual points for the equation and BC/IC.

functions using AD, which is conveniently integrated in machine learning packages
such as TensorFlow [1] and PyTorch [43].

In the next step, we need to restrict the neural network \^u to satisfy the physics
imposed by the PDE and boundary conditions. In practice, we restrict \^u on some
scattered points (e.g., randomly distributed points, or clustered points in the domain
[37]), i.e., the training data \scrT = \{ x1,x2, . . . ,x| \scrT | \} of size | \scrT | . In addition, \scrT comprises
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boundary, respectively. We refer to \scrT f and \scrT b as the sets of ``residual points.""

To measure the discrepancy between the neural network \^u and the constraints,
we consider the loss function defined as the weighted summation of the L2 norm of
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PINN for inverse problems

• NO modification of the NN
• just augment the parameter vector in the loss function to
include the sought-for coefficients, λ, by including a
supplementary loss, Li(θ, λ, Ti)

• that’s it, folks...
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PINN pros

• mesh-free (only requires residual points where the
solution is sought)

• strong (differential) form avoids discretization, stability,
numerical integration errors

• leverages AD that is much better than other differentiation
methods, especially in higher dimensions

• can deal with noisy/uncertain data
• can use mini-batch techniques for better convergence,
especially in inverse problems

• can achieve incredible speed-ups once trained, for
subsequent evaluations - order 103 to 104
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PINN cons

• terrible optimization problem... though new solutions
appear, almost daily—see arXiv

• network architecture/size is very problem dependent
• convergence sensitive to NN initialization, requiring some
sort of CV or at least a batch of random repeats

• requires hyperparameter tuning: size, learning rate,
number of residual points (no free lunch...)
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PINN: conclusions

• recommended for simple PDEs, in geometrically simple
domains

• useful for initial, feasibility studies, especially for inverse
problems

• must perform extensive hyperparameter tuning
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Learn the Operator: operator nets

• Use the Universal Operator Approximation Theorem...

|G(u)(y)−
p∑
k=1

n∑
i=1

cki σ

 m∑
j=1

ξkiju(xj) + θki


︸ ︷︷ ︸

branch

σ (wk · y + ζk)︸ ︷︷ ︸
trunk

| < ε,

where G is the solution operator, u is an input function, xi
are “sensor” points, y are random points where we
evaluate the output function G(u).

• 2 main contenders:
• DeepONet
• Fourier Neural Operators (FNO)

• - a special case of DeepONet
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DeepONet architecture

u(x1)

u(xm)

...

σ

σ

σ

⊗ G(u)(y)

Branch network

y

σ

σ

σ

σ

σ

σ

Trunk network
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Loss function

• Branch (FCNN, ResNET, CNN, etc.) and trunk networks
(FCNN) are merged by an inner product.

• Prediction of a function u evaluated at points y is then
given by

Gθ(u)(y) =
q∑
k=1

bk(u(x))︸ ︷︷ ︸
branch

tk(y)︸︷︷︸
trunk

+b0

• Training weights and biases, θ, computed by minimizing
the loss (mini-batch by Adam, single-batch by L-BFGS)

Lo(θ) =
1
NP

N∑
i=1

P∑
j=1

∣∣∣Gθ(u(i))(y(i)j )− G(u(i))(y(i)j )
∣∣∣2
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Operator nets: pros and cons

• Pros:
• relatively fast training (compared to PINN)
• can overcome the curse of dimensionality (in some cases...)
• suitable for multiscale and multiphysics problems

• Cons:
• no guarantee that physics is respected
• require large training sets of paired input-output
observations (expensive!)
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DeepONet + PINN = PI-DeepONet

• We can combine the two, to get the best of both worlds

L(θ) = wfLf (Gθ(u)(y)) + wbLb(Gθ(u)(y)) + woLo(Gθ(u)(y))

• Results:5

• no need for paired input-ouput observations, just samples
of the input function and BC/IC (self-supervised learning)

• respects the physics
• improved predictive accuracy
• ideal for parametric PDE studies—optimization, parameter
estimation, screening, etc.

5Wang, Wang, Bhouri, Perdikaris. arXiv:2103.10974v1, arXiv:2106.05384,
arXiv:2110.01654, arXiv:2110.13297
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PI-DeepONet

A PREPRINT - OCTOBER 13, 2021

DeepONet

Branch Net

Trunk Net BC

PDE

Loss
Minimize

Figure 1: Physics-informed DeepONets: The DeepONet architecture [4] consists of two sub-networks referred as the
branch network and the trunk network, which extract latent representations of input functions u and input coordinates y
at which the output functions are evaluated, respectively. A continuously differentiable representation of the output
functions is then obtained by merging the outputs of each sub-network via a dot product. Automatic differentiation can
then be employed to formulate appropriate regularization mechanisms for biasing the DeepONet outputs to satisfy a
given system of PDEs.

where Loperator(θ) can be defined exactly the same as in equation (2.16), which aims to fit available experimental data
and numerical estimations. Notice that this enables one to train DeepONet models even if no paired input-output
observations are available, except for assuming knowledge of the initial and boundary conditions 2.11. Then one can
define

N∑

i=1

L(u,θ) =
1

P

P∑

j=1

|B(u(xj), Gθ(u)(yj))|2 . (2.20)

For each input sample u, {xj}Pj=1 and {yj}Pj=1 denote two sets of points that are randomly sampled from the domain
of u and the boundary of G(u), respectively, for imposing boundary conditions. Consequently we can define

Loperator(θ) =
1

N

N∑

i=1

L(u(i),θ) =
1

NP

N∑

i=1

P∑

j=1

∣∣∣B(u(i)(x
(i)
j ), Gθ(u(i))(y

(i)
j ))

∣∣∣
2

, (2.21)

and

Lphysics(u,θ) =
1

Q

Q∑

j=1

|N (u(xr,j), Gθ(u)(yr,j))|2 , (2.22)

where {xr,j}Qj=1 and {yr,j}Qj=1 denote two sets of collocation points that are randomly sampled from the domain of u
and G(u), respectively, for enforcing the set of parametric PDE constraints described equation (2.10). It also follows
that

Lphysics(θ) =
1

N

N∑

i=1

Lphysics(u
(i),θ) (2.23)

=
1

NQ

N∑

i=1

Q∑

j=1

∣∣∣N (u(i)(x
(i)
r,j), Gθ(u(i))(y

(i)
r,j))

∣∣∣
2

(2.24)

As shown in Wang et. al. [8, 9], it is worth pointing out that physics-informed DeepONets are capable of learning
the solution operator of parametric PDEs in an entirely self-supervised manner, i.e. without any paired input-output
observations.

3 Methods

3.1 Gradients pathologies in DeepONets

Although DeepONets and physics-informed DeepONets have demonstrated a series of promising results in learning
nonlinear operators and solving multi-physics problems [4, 31, 15, 8, 9], it is worth noting that the original formulation

5

[Credit: Wang, Wang, Perdikaris; arXiv, 2021]
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Machine Learning

Automatic Differentiation (AD)



AD

• Used in all (D)NN algorithms to compute the network
parameters/coefficients θ = {w,b}

• Compute θ by minimizing a loss function L(θ), based on
training pairs, using a stochastic gradient descent method.

• Gradient computed by backpropagation = reverse-mode
AD.

• Observation: reverse-mode AD is equivalent to the
adjoint-state method, a well-known approach for solving
PDE-constrained inverse problems.

• Proposition: use AD to solve inverse probelms
• Pros: AD is robust, scalable, accurate, flexible and efficient
(can be parallelized over GPUs).

• Cons: need to incorporate/constrain the respect of the
physics...
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AD: Physics constrained learning

Problem formulation:

• Given observations/measurements uobs = {u(xi)}i∈I of u
at the locations x = {xi}

• Estimate the parameters θ by minimizing a loss function

L(θ) =
∥∥∥u(x)− uobs

∥∥∥2
2

subject to F(u; θ) = 0.
• If θ = θ(x), then it can be modeled by a NN...

Idea
To incorporate the physics constraint in the minimization
problem we use the implicit function theorem and the
chain-rule to calculate the gradient of the loss function with
respect to all the parameters—inversion and NN
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Application

The physical problem



ADSIL: Sperm whale monitoring
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Sperm whale model
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Sperm whale model
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Inverse problem

For the elasto-acoustic wave propagation model

L(u,m) = f , in Ω

• Given: recorded signals, uobs(x, t) at points {xi} ∈ Ω0

• Estimate:
• material properties, mi(x), i = 1, 2, 3, 4 in each region Ωi
• location and form of the initial source pulse f (x, t).
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Application

Classical inversion by adjoint method



Adjoint

• formulation – see Ferrari, 2020.
• implementation of inversion – TBC.
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Application

Machine learning inversions



Prospective

• start with AD, using NN for the pulse shape
• continue with PI-DeepONet, for example.
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Thank you!
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Reserve



Reserve

DeepONet



deepOnet formulation

• Parametric, linear/nonlinear operator plus IBC (IBVP)

O(u, s) = 0,
B(u, s) = 0,

• where
• u ∈ U is the input function (parameters),
• s ∈ S is the hidden, solution function

• If ∃! solution s = s(u) ∈ S to the IBVP, then we can define
the solution operator G : U 7→ S by

G(u) = s(u).
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deepOnet formulation II

• Approximate the solution map G by a DeepONet Gθ

Gθ(u)(y) =
q∑
k=1

bk(u(x))︸ ︷︷ ︸
branch

tk(y)︸︷︷︸
trunk

+b0

where θ represents all the trainable weights and biases,
computed by minimizing the loss at a set of P random
output points

{
yj
}p
j=1

L(u, θ) = 1
P

P∑
j=1

∣∣Gθ(u)(yj)− s(yj)
∣∣2 ,

and s(yj) is the PDE solution evaluated at P locations in
the domain of G(u)
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deepOnet formulation III

• To obtain a vector output, a stacked version is defined by
repeated sampling over i = 1, . . . ,N, giving the overall
operator loss

Lo(θ) =
1
NP

N∑
i=1

P∑
j=1

∣∣∣Gθ(u(i))(y(i)j )− s(i)(y(i)j )
∣∣∣2
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PI-deepOnet

• Train by minimizing the composite loss

L(θ) = Lo(θ) + Lφ(θ),

where
• the operator loss is as above for deepOnet, or using the IBC

Lo(θ) =
1
NP

N∑
i=1

P∑
j=1

∣∣∣B (u(i)(x(i)j ),Gθ(u(i))(y(i)j )
)∣∣∣2

• the physics loss is computed using the operator network
approximate solution

Lφ(θ) =
1
NQ

N∑
i=1

Q∑
j=1

∣∣∣O (u(i)(x(i)j ),Gθ(u(i))(y(i)j )
)∣∣∣2

• This is self-supervised, and does not require paired
input-output observations!
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Reserve

Inverse problem and AD



AD: Inverse problem formulation

• Given a physical relation

F(u;θ) = 0 (2)

represented by an IBVP, or other functional relationship,
with

• u the physical quantity
• θ the (material/medium) properties/parameters

• Inverse Problem is defined as:
• Given observations/measurements of u at the locations
x = {xi}

uobs = {u(xi)}i∈I

• Estimate the parameters θ by minimizing a
loss/objective/cost function

L(θ) =
∥∥u(x)− uobs∥∥2

2

subject to (2).
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AD: Physics constrained learning

• If θ = θ(x), model it by a NN
• Express numerical scheme for approximating the PDE (2)
as a computational graph G(θ)

• Use reverse-mode AD (aka. backpropagation) to compute
the gradient of L with respect to θ and the NN coefficients
(weights and biases)

• Minimize by a suitable gradient algorithm
• Adam, SGD (1st order)
• L-BFGS (quasi-Newton)
• trust-region (2nd order)
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AD: Computing the gradient

• Optimization problem: minθ L(u) subject to F(θ,u) = 0.
• Suppose we have a computational graph for u = G(θ).
• Then L̃(θ) = L (G(θ)) and by the IFT we can compute the
gradient with respect to θ,

• first of F,

∂F
∂θ

+
∂F
∂u

∂G
∂θ

= 0, ⇒ ∂G
∂θ

= −
[
∂F
∂u

]−1
∂F
∂θ

• then of L̃, by the chain rule,

∂L̃
∂θ

=
∂L
∂u

∂G
∂θ

= − ∂L
∂u

[
∂F
∂u

]−1
∂F
∂θ

• The first derivative is obtained directly from the loss
function, the second and third by reverse-mode AD
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Reserve

Wave propagation model



Acoustic-elastic wave equation

• In the fluid regions, Ωf, we will solve the acoustic wave
equation system,

ρ
∂v
∂t

= −∇p in Ωf × [0, T],

∂p
∂t

= −ρc2∇ · v in Ωf × [0, T]. (3)

• In the solid regions, Ωs, we will solve the elastic wave
equation system,

ρ
∂vi
∂t

=
3∑
j=1

∂σij
∂xj

in Ωs × [0, T],

∂σij
∂t

=
1
2

3∑
k=1

3∑
l=1

cijkl
(
∂vk
∂xl

+
∂vl
∂xk

)
in Ωs × [0, T]. (4)
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Wave equation: source and IBC

• The acoustic source will be simulated as a forcing term,
f (x, t), on the right-hand side of the pressure equation (3),
or (4), depending on whether it is located in the fluid or
solid regions, respectively.

• To complete this system, we add the following boundary
conditions:

• On the exterior, fluid boundary, an absorbing boundary
condition on p.

• On the interior boundaries, between different materials,
interface conditions that are described below.

• Finally, the initial conditions are set equal to zero for p, v
and σ since a forcing function is used.
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Adjoint-state system

• Cost function to be minimized,

J(C, ρ) = 1
2

∫ T

0

∫
Ω
‖u− uobs‖22 dV dt

where

C =



2µ + λ λ λ 0 0 0
λ 2µ + λ λ 0 0 0
λ λ 2µ + λ 0 0 0
0 0 0 2µ 0 0
0 0 0 0 2µ 0
0 0 0 0 0 2µ


,

• Gradient of J can be expressed in terms of λ and µ as

∇λJ(λ) =
∫ T

0

∫
Ω
< 4λ

3∑
i=1

3∑
j=3

∂vj
∂xj

ηiv|R∗η > dVdt,

∇µJ(µ) =
∫ T

0

∫
Ω
< 2µI6D2v|R∗η > dVdt.
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