
Kalman Filters: from Data Assimilation
to Inverse Problems

Mark Asch 1

1LAMFA - Université de Picardie Jules Verne

Journéé du LAMFA, Amiens, 28/06/2024
1



Outline



Outline of the Talk

• Direct vs. Inverse Problems

• Data Assimilation

• Kalman Filters: linear, nonlinear, ensemble.
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Introduction



Direct and Inverse Problems

Dynamical System

du
dt

= g(t,u;θ), u(t0) = u0,

with g known, θ ∈ Θ, u(t) ∈ Rk.

Direct: Given θ, u0, find u(t) for
t ≥ t0.

Inverse: Given u(t) for t ≥ t0, find
θ ∈ Θ.
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Example: inference of the thermal conductivity in a plate

Unknown parameter:

Thermal conductivity u(x)

(true)

MAP estimator:

(reconstructed)

Solution:

Temperature field T (x)

Mathematical model:

�r ·
�
u(x)rT (x)

�
= f(x), x 2 ⌦,

T (x) = 0, x 2 @⌦.

Forwar
d proble

m

Data:

Noisy temperature measurements:

y =
�
T (x1), . . . , T (xm)

�
+ ⌘.

Inverse problem

Inverse problems: optimization and sampling approaches 5 / 31



Deterministic and Stochastic Problems

In reality, we have uncertainty (noise)

• in the model,
• in the parameters,
• in the observations.

The dynamical system becomes

y = G(u) + η,

where η ∼ N (0,Σ).
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Inverse Problems - Deterministic Case

In the deterministic case (η = 0), because of the ill-posedness of the inverse
problem, we replace it by the least-squares optimization problem,

argmin
u∈X

1

2
‖y − G(u)‖2Y

that is usually regularized as

argmin
u∈E

1

2

(
‖y − G(u)‖2Y +

1

2
‖u−m0‖2E

)
for a given reference pointm0 ∈ E, with E, X, Y Banach spaces. The
optimization requires a gradient (or adjoint).
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Inverse Problems - Stochastic Case

In the stochastic case, the solution of the inverse problem is a posterior

probability density function (ppdf).

Theorem (Bayes)

p(u|y) = p(y|u)p(u)
p(y)

,

or

p(parameter|data) ∝ p(data|parameter)p(parameter).
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Bayes’ Theorem

Bayes posterior for Gaussian prior and likelihood
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Data Assimilation - Definition

Definition (DA)

Data assimilation concerns the estimation of the state of a dynamical

system by optimally combining observed data with the underlying

mathematical model.

[Stuart] The problem of effectively combining data with a mathe-

matical model constitutes a major challenge in applied mathematics. It

is particular challenging for high-dimensional dynamical systems where

data is received sequentially in time and the objective is to estimate the

system state in an on-line fashion; this situation arises, for example, in

weather forecasting. The sequential particle filter is then impractical and

ad hoc filters, which employ some form of Gaussian approximation, are

widely used. Prototypical of these ad hoc filters is the 3DVAR method.
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Data Assimilation - Filters

• The 3DVAR method is the simplest Gaussian filter, relying on fixed
(with respect to the data time-index increment) forecast and analysis

model covariances, related through a Kalman update.

• Amore sophisticated idea is to update the forecast covariance via the
linearized dynamics, again computing the analysis covariance via a

Kalman update, leading to the extended Kalman filter.

• In high dimensions computing the full linearized dynamics is not
practical. For this reason the ensemble Kalman filter is widely used, in

which the forecast covariance is estimated from an ensemble of

particles, and each particle is updated in Kalman fashion.
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Kalman Filter - Navigation

State Space Model
Dynamics: vn+1 = Mvn + ξn, n ∈ Z+,

Data: yn+1 = Hvn+1 + ηn+1, n ∈ Z+

Probability: v0 ∼ N (m0, C0), ξn ∼ N (0,Σ), ηn ∼ N (0,Γ)

Probability: v0 ⊥ {ξn} ⊥ {ηn} independent

• Rudolf Kálmán (1960), Apollo 11
• ≈ 44 000 citations (G-Scholar, 05/2024)
• Algorithm:

• vn|Yn ∼ N (mn, Cn),

• (mn, Cn) 7→ (mn+1, Cn+1)
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Kalman Filter - 3DVAR

State Space Model
Dynamics: vn+1 = Ψ(vn) + ξn, n ∈ Z+,

Data: yn+1 = Hvn+1 + ηn+1, n ∈ Z+

Probability: v0 ∼ N (m0, C0), ξn ∼ N (0,Σ), ηn ∼ N (0,Γ)

Probability: v0 ⊥ {ξn} ⊥ {ηn} independent

• Andrew Lorenc (1986)
• ≈ 2 000 citations (G-Scholar, 05/2024)
• Convergence: Stuart, et al (2012)
• Algorithm:

• vn 7→ vn+1,

• C fixed.
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Kalman Filter - Ensemble

State Space Model
Dynamics: vn+1 = Ψ(vn) + ξn, n ∈ Z+,

Data: yn+1 = Hvn+1 + ηn+1, n ∈ Z+

Probability: v0 ∼ N (m0, C0), ξn ∼ N (0,Σ), ηn ∼ N (0,Γ)

Probability: v0 ⊥ {ξn} ⊥ {ηn} independent

• Geir Evensen (1994)
• ≈ 15 000 citations (G-Scholar, 05/2024)
• Algorithm:

• X = {xe}Ne
e=1, x̄ = (1/Ne)

∑Ne
e=1 xe,

Ce = (1/(Ne − 1))
∑Ne

e=1(xe − x̄)(xe − x̄)T

• (mn, Cn) 7→ (mn+1, Cn+1)
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Kalman Filter - Mean Field

State Space Model
Dynamics: vn+1 = Ψ(vn) + ξn, n ∈ Z+,

Data: yn+1 = H(vn+1) + ηn+1, n ∈ Z+

Probability: v0 ∼ N (m0, C0), ξn ∼ N (0,Σ), ηn ∼ N (0,Γ)

Probability: v0 ⊥ {ξn} ⊥ {ηn} independent

• Andrew Stuart (2022–)
• Convergence: Acta Numerica (2025)
• Algorithm:

• X = {xe}Ne
e=1, x̄ = (1/Ne)

∑Ne
e=1 xe,

Ce = (1/(Ne − 1))
∑Ne

e=1(xe − x̄)(xe − x̄)T

• (vn, µn) 7→ (vn+1, µn+1), µn
.
= Law(vn).
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Kalman Filters - Classical State Space

xk+1 = Mxk + wk, (1)

yk+1 = Hxk + vk, (2)

where1

• M is the dynamics ,

• H the observation operator,

• wk ∼ N (0, Q) the process noise,

• vk ∼ N (0, R) the observation noise.

1Notation: classical state space uses x, y, M andH,whereas probabilistically we will use
u or v, y, Ψ or G, and H. For covariance matrices P or C, respectively.
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Kalman Filters - Flowchart

Time Update (“Predict”)

(1) Project the state ahead

xf
k+1 =Mxa

k

(2) Project the error covariance ahead

Pf
k+1 =MPa

k
MT+Q

Measurement Update (“Correct”)

(1) Compute the Kalman gain

Kk+1 = Pf
k+1H

T(HPf
k+1H

T+R)−1

(2) Update estimate with measurement

xa
k+1 = xf

k+1+Kk+1(yk+1−Hxf
k+1)

(3) Update the error covariance

Pa
k+1 = (I−Kk+1H)P

f
k+1

Initialization

Initial estimates for xa
k

and Pa
k
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Ensemble Kalman Filters

xk+1 = M(xk) + wk, yk+1 = H(xk) + vk, x = {xe}, e = 1, . . . , Ne

[Credit:F. Gillet-Chaulet, 2020]

17



Ensemble Kalman Filters - Algorithm

Predict

v̂nk+1 = Ψ(vnk ) + ξnk , m̂k+1 =
1

Ne

N∑
i=1

v̂nk+1, ;n = 1, . . . , Ne, (3)

Ĉk+1 =
1

Ne − 1

Ne∑
i=1

(
v̂nk+1 − m̂k+1

) (
v̂nk+1 − m̂k+1

)T
(4)

Correct
Kk+1 = Ĉk+1H

TS−1
k+1, Sk+1 = HĈk+1H

T + Γ, (5)

ynk+1 = yk+1 + ηnk+1, n = 1, . . . , Ne, (6)

vnk+1 = v̂nk+1 +Kk+1d, d = ynk+1 −Hv̂nk+1, n = 1, . . . , Ne. (7)
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Ensemble Kalman Filters - Algorithm

Algorithm: Ensemble KF

Input : Ne, y, process and noise covariances
Output: v, C
Choose {ve0}Ne

e=1, j = 0 ;
for k ← 1 toK do

Predict {v̂ek+1}
Ne
e=1, Ĉk+1 from (3-4) ;

Update {vek+1}
Ne
e=1 from (5-7)

There are many (> 20) EnKF variants—stochastic and deterministic2.

2S. Vetra-Carvalho, P.J. van Leeuwen, L. Nerger, A. Barth, M. Umer Altaf, P. Brasseur. ”State-of-the-art

stochastic data assimilation methods for high-dimensional non-Gaussian problems”. Tellus A, 70, (2018)
19



Ensemble Kalman Filters - Properties

• EnKF represents error statistics by ensembles of (nonlinear) model and
(nonlinear) measurement realizations.

• EnKF performs sequential DA that processes measurements recursively
in time.

• EnKF is suitable for weather-prediction or any other complex, chaotic
dynamic systems.

• Error propagation is nonlinear.
• Filter update is linear and computed in the low rank, ensemble
subspace.

• EnKF does not require any gradients, adjoints, linearizations.
• EnKF computations are embarassingly parallel.
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Example - EnKF for Lorenz63 System I

We apply the EnKF to the Lorenz systems of ordinary differential equations.

These systems exhibit chaotic behavior and as such are considered as

excellent toy models for complex phenomena, in particular for simulation of

weather. The Lorenz-63 system is given by

dx
dt

= −σ(x− y),

dy
dt

= ρx− y − xz, (8)

dz
dt

= xy − βz,

where x = x(t), y = y(t), z = z(t) and σ (ratio of kinematic viscosity divided
by thermal diffusivity), ρ (measure of stability) and β (related to the wave
number) are parameters.
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Example - EnKF for Lorenz63 System II

Chaotic behavior is obtained for

σ = 10, ρ = 28, β = 8/3.
The solution is very sensitive to the

parameters and the initial conditions

and a small difference in these values

can lead to a very different solution.

This equation is an excellent example

of the lack of predictability. The

solution switches between two stable

orbits, around the points(√
β(ρ− 1),

√
β(ρ− 1), ρ− 1

)
, and(

−
√

β(ρ− 1),−
√

β(ρ− 1), ρ− 1
)
.
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Example - EnKF for Lorenz63 III
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Example - EnKF for Lorenz63 III
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Theory



Ensemble Kalman Inversion - Setting I
• In 1960 R. Kalman3 published the first paper to develop a systematic,
principled approach to the use of data to improve the predictive

capability of dynamical systems. As our ability to gather data grows at

an enormous rate, the importance of this work continues to grow too.

The paper is confined to linear dynamical systems subject to Gaussian

noise.
• The work of Geir Evensen4 in 1994 opened up far wider applicability of
Kalman’s ideas by introducing the ensemble Kalman filter. The EnKF

applies to the setting in which nonlinear and noisy observations are

used to make improved predictions of the state of a Markov chain. The

algorithm results in an interacting particle system combining elements

of the Markov chain and the observation process.
3R. Kalman, A new approach to linear filtering and prediction problems. J. Basic Eng., 82:35–45, 1960.
4G. Evensen, Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo

methods to forecast error statistics. J. Geophys. Research, 99(C5), 1994.
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Ensemble Kalman Inversion - Setting II

• A unifying mean-field perspective on the algorithm was very recently
derived by Stuart et al5 in the limit of an infinite number of interacting

particles. This methodology can be used to study inverse problems,

opening up diverse applications beyond prediction in dynamical

systems.
• Analysis of the methodology, both in terms of accuracy and uncertainty
quantification has been developed.
• Despite its widespread adoption in applications, a complete
mathematical theory is lacking and there are many opportunities for

analysis and applications in this area.

5Calvello, Edoardo, Sebastian Reich, and AndrewM. Stuart. 2025. “Ensemble Kalman

Methods: AMean Field Perspective.” Acta Numerica. http://arxiv.org/abs/2209.11371.
26
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Iterative EKI
Conceptually, the idea of EKI is very simple. Just apply the standard EnKF to

an augmented system of state plus parameters, for a given number of

iterations, to invert for θ.We begin by pairing the parameter-to-data map
with a dynamical system for the parameter, and then employ techniques

from filtering to estimate the parameter given the data.

IDEA

Introduce a pseudo-time, and write down the augmented system

θn+1 = θn

yn+1 = G(θn+1) + ηn+1,

where the operator G contains both the system dynamics and the
observation function.
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Mean-Field EKI

Consider the stochastic dynamical system

evolution: θn+1 = θn + ωn+1, ωn+1 ∼ N (0,Σω), (9)

observation: xn+1 = F(θn+1) + νn+1, νn+1 ∼ N (0,Σν). (10)

where

F(θ) =
[
G(θ)
θ

]
.

We seek the best Gaussian approximation of the posterior distribution of θ
for ill-posed inverse problems, where the prior is a Gaussian, θ0 ∼ N (r0,Σ0).
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Convergence

Theorem (EKI Linear)

For a linear dynamic model, assume that the prior covariance matrix Σ0 � 0 and
initial covariance matrix C0 � 0. Then iteration for the conditional meanmn and

covariance matrix Cn characterizing the distribution of θn|Yn converges

exponentially fast to the posterior mean,mpost, and covariance, Cpost.

Theorem (EKI Near-Gaussian)

If the measure µn is ε-close to Gaussian, then

sup
0≤n≤Ne

dg(µn, µ
EK
n ) ≤ Cε

for bounded Ψ, H, where dg is a wieghted TVmetric over measures µ.
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Conclusions and Perspectives



Conclusions
• Kalman-based inversion can be widely used to construct derivative-free
optimization and sampling methods for nonlinear inverse problems.

• Kalman-based inversion methods for Bayesian inference and UQ build
on the work in both optimization and sampling.

• They propose a new method for Bayesian inference based on filtering a
novel mean-field dynamical system subject to partial noisy

observations, and which depends on the law of its own filtering

distribution, together with application of the Kalman methodology.

• Theoretical guarantees are presented:
• for linear inverse problems, the mean and covariance obtained by the
method converge exponentially fast to the posterior mean and

covariance;

• for nonlinear inverse problems, numerical studies indicate the method
delivers an excellent approximation of the posterior distribution for

problems which are not too far from Gaussian. (proven 2024) 30



Conclusions II

In terms of performance:

1. The methods are shown to be superior to existing coupling/transport

methods, collectively known as iterative Kalman methods.

2. Deterministic, such as ETKF, rather than stochastic implementations of

Kalman methodology are found to be favorable.
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Perspectives

• There are many open, interesting research questions both in theoretical
aspects and for implementations.

• In the framework of the NumPeX6 PEPR, INRIA-MAKUTU team
proposes a PhD7 on EKI for large-scale problems in wave propagation.

• High performance computing will be performed using the MELISSA
framework of the INRIA-DATAMOVE8 team.

6https://numpex.org/
7https://jobs.inria.fr/public/classic/fr/offres/2024-07451
8https://www.inria.fr/en/datamove
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