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Introduction



Direct and Inverse Problems

Dynamical System
du
E - g(ta u, 0)7

with g known, 8 € ©, u(t) € R*.

ll(tg) = Up,

Direct: Given 6, uy, for
t > to.

Inverse:
0 c0O.

fort > ty, find

Direct Problem:

Model Parometers |— = Pw,s:tl P)dE @
WS

Inverse Problem:




Example: inference of the thermal conductivity in a plate

Mathematical model:

Solution:
-V (u(@)VT(z)) = f(z), z € Q,
T(z) =0, z € 0.
Unknown parameter: oblem
Forwa‘d o'
Thermal conductivity u(z)
Temperature field T'(x)
Data:

(tru;e)‘

MAP estimator:

rse problem Noisy temperature measurements:

\nve
y=(T(z1),....,T(xm)) + 1.

(recon§trﬁcted) e




Deterministic and Stochastic Problems

In reality, we have uncertainty (noise)

® in the model,
® in the parameters,
e in the observations.

The dynamical system becomes

y =G(u)+1n,
where n ~ N (0, 2).



Inverse Problems - Deterministic Case

In the deterministic case (n = 0), because of the ill-posedness of the inverse
problem, we replace it by the least-squares optimization problem,

!
argmin - |y — G(u)ll}
ueX

that is usually regularized as

1 1
arguin 5 (1l = G+ Ju = ol
uelr
for a given reference point my € E, with £, X, Y Banach spaces. The
optimization requires a gradient (or adjoint).



Inverse Problems - Stochastic Case

In the stochastic case, the solution of the inverse problem is a posterior
probability density function (ppdf).

Theorem (Bayes)
p(ylu)p(u)

p(uly) = o)

9

or
p(parameter|data) o p(data|parameter)p(parameter).




Bayes' Theorem

Bayes posterior for Gaussian prior and likelihood



Data Assimilation - Definition

Definition (DA)

Data assimilation concerns the estimation of the state of a dynamical
system by optimally combining observed data with the underlying
mathematical model.

[Stuart] The problem of effectively combining data with a mathe-
matical model constitutes a major challenge in applied mathematics. It
is particular challenging for high-dimensional dynamical systems where
data is received sequentially in time and the objective is to estimate the
system state in an on-line fashion; this situation arises, for example, in
weather forecasting. The sequential particle filter is then impractical and
ad hoc filters, which employ some form of Gaussian approximation, are
widely used. Prototypical of these ad hoc filters is the 3DVAR method.



Data Assimilation - Filters

¢ The 3DVAR method is the simplest Gaussian filter, relying on fixed
(with respect to the data time-index increment) forecast and analysis
model covariances, related through a Kalman update.

e A more sophisticated idea is to update the forecast covariance via the
linearized dynamics, again computing the analysis covariance via a
Kalman update, leading to the extended Kalman filter.

¢ In high dimensions computing the full linearized dynamics is not
practical. For this reason the ensemble Kalman filter is widely used, in
which the forecast covariance is estimated from an ensemble of
particles, and each particle is updated in Kalman fashion.
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Kalman Filter - Navigation

State Space Model
Dynamics: Up41 = Mv, +§&,, ne€ZT,
Data: ynt1 = HUpp1 + g1, neEZ
Probability: vy ~ N (mg, Co), & ~N(0,%), n, ~N(0,T)
Probability: vy L {&,} L {n,} independent

e Rudolf Kalman (1960), Apollo 11
e =~ 44 000 citations (G-Scholar, 05/2024)
e Algorithm:

® u,|Y, ~ N(my,,Cy),

® (mn,Cp) = (Mpy1,Cpy)
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Kalman Filter - 3DVAR

State Space Model
Dynamics: vpy1 = V(v,) + &, n€Zt,
Data: yni1 = HUpg1 + g1, neZ
Probability: wvg ~ N (mqg, Cy), &, ~N(0,%), n, ~N(0,T)
Probability: vy L {&,} L {n,} independent

Andrew Lorenc (1986)
~ 2 000 citations (G-Scholar, 05/2024)
Convergence: Stuart, et al (2012)
Algorithm:

® Up > Uptl,

e (C fixed.
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Kalman Filter - Ensemble
State Space Model

Dynamics:
Data:
Probability:
Probability:

Un+1 = ‘I/(Un) + gna ne Z+>
Yns1 = HUpi1 + Npy1, nEZLT

Vo NN(m07 00)7 £n ~ N(O, 2)7

vo L {&} L {m} independent

Nn ~ N(0,T)

e Geir Evensen (1994)

e ~ 15 000 citations (G-Scholar, 05/2024)

e Algorithm:

o X ={x} 1795—(1/N)Ze 1%es
Ce=(1/(Ne = 1)) X0 (20 — &) (we — 7)T

° (mnvcn) = (mn+lycn+1)
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Kalman Filter - Mean Field

State Space Model
Dynamics: vp1 = V(v,) +&,, neZt,
Data: Ypy1 = H(Ung1) + Moy, n€ZT
Probability: wvg ~ N (mg, Cy), &, ~N(0,%), n, ~N(0,T)
Probability: wvy L {&.} L {n,} independent

e Andrew Stuart (2022-)
e Convergence: Acta Numerica (2025)
e Algorithm:
. X {we}le 1,x—(1/N)Ze 1 Tes
= (1/(Ne = 1)) 320 (e — &) (we — )T

° (Um pn) = (Vng1s fng1), o = Law(vy).
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Kalman Filters - Classical State Space

Thy1 = MZEk + Wi, (1)
Yr+1 = Hzp + vy, (2)

where?!
e )/ is the dynamics,
e [{ the observation operator,
e w;, ~ N(0,Q) the process noise,
e v, ~ N (0, R) the observation noise.

INotation: classical state space uses z, y, M and H, whereas probabilistically we will use
uorwv,y, ¥orgG, and H. For covariance matrices P or C, respectively.
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Kalman Filters - Flowchart

/\ (Measurement Update (“Correct™)
(Time Update (“Predict”) ) (1) Compute the Kalman gain
(1) Project the state ahead K= P2+1HT(HP2+1HT +R)!
Xi 1 =Mx; (2) Update estimate with measurement
(2) Project the error covariance ahead X = xiH +Kp (Ve — fok_H)
Pi e MPZMT +Q (3) Update the error covariance
L -~/ a £
p Py =I—Ke )P,

Initialization

Initial estimates for x} and P,




Ensemble Kalman Filters

Tp1 = M (xy) + wy,

System state / observation

Y1 = H(zg) + v, z={z.}, e=1,...

Observation

Truth

p Initial
forecast

Time

Ty = 2o + mydt Ty =11 + nodt

[Credit:F. Gillet-Chaulet, 2020]

Ty = to+nydt

, Ne
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Ensemble Kalman Filters - Algorithm

Predict
1 N
@IZ—&-l :\Ij(vl?)_‘_gga mk-ﬁ-l ZFZ k+1>a -7Nea (3)
. 1 Ne o . o . T
Chi1 = N —1 Z (Uk+1 - mk+1) (Uk+1 - mk+1) (4)
€ i=1

Correct A A
Kiy1 = Cre1 H'S L, Sppr = HCp HY 4T, (5)
3/1?+1:yk+1+772+1: n:17"'>N67 (6)
UZ—{-I = ®E+1 + Kk-f—ld’ d= yZ—‘,—l - H{;Z—&—l? n = 17 ceey Ne- (7)
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Ensemble Kalman Filters - Algorithm

Algorithm: Ensemble KF
Input : NV, y, process and noise covariances
Output: v, C
Choose {vo 1, 7 =03
for k <+ 1to K do
Predict {@,";H}ével, Cloy1 from (3-4) ;
Update {v,€+1 , from (5-7)

There are many (> 20) EnKF variants—stochastic and deterministic?.

25. Vetra-Carvalho, P.J. van Leeuwen, L. Nerger, A. Barth, M. Umer Altaf, P. Brasseur. "State-of-the-art

stochastic data assimilation methods for high-dimensional non-Gaussian problems”. Tellus A, 70, (2018)
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Ensemble Kalman Filters - Properties

e EnKF represents error statistics by ensembles of (nonlinear) model and
(nonlinear) measurement realizations.

e EnKF performs sequential DA that processes measurements recursively
in time.

e EnKF is suitable for weather-prediction or any other complex, chaotic
dynamic systems.

e Error propagation is nonlinear.

e Filter update is linear and computed in the low rank, ensemble
subspace.

¢ EnKF does not require any gradients, adjoints, linearizations.

e EnKF computations are embarassingly parallel.
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Example - EnKF for Lorenz63 System |

We apply the EnKF to the Lorenz systems of ordinary differential equations.
These systems exhibit chaotic behavior and as such are considered as
excellent toy models for complex phenomena, in particular for simulation of
weather. The Lorenz-63 system is given by

dx

E:_U(x_y)v

d

d—‘z:px—y—m, (8)
d

d_j:'xy_ﬁzv

where © = z(t), y = y(t), z = z(t) and o (ratio of kinematic viscosity divided
by thermal diffusivity), p (measure of stability) and 3 (related to the wave
number) are parameters.
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Example - EnKF for Lorenz63 System Il

Chaotic behavior is obtained for
c=10, p=28 [B=8/3.

The solution is very sensitive to the
parameters and the initial conditions
and a small difference in these values
can lead to a very different solution.
This equation is an excellent example
of the lack of predictability. The
solution switches between two stable
orbits, around the points

(\/ﬁ(p —1),v/Blp—1),p~ 1) , and
(~VBo 1. ~VBl 1. 1).

Lorenz Attractor
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Example - EnKF for Lorenz63 Ill
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Example - EnKF for Lorenz63 Ill

—— True EnKF analysis o

Observation

- Unfiltered

0 2 4
t

6

10

10
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Theory



Ensemble Kalman Inversion - Setting |

e In 1960 R. Kalman® published the first paper to develop a systematic,
principled approach to the use of data to improve the predictive
capability of dynamical systems. As our ability to gather data grows at
an enormous rate, the importance of this work continues to grow too.
The paper is confined to linear dynamical systems subject to Gaussian
noise.

e The work of Geir Evensen* in 1994 opened up far wider applicability of
Kalman'’s ideas by introducing the ensemble Kalman filter. The EnKF
applies to the setting in which nonlinear and noisy observations are
used to make improved predictions of the state of a Markov chain. The
algorithm results in an interacting particle system combining elements

__of the Markov chain and the observation process.

SR, Kalman, A new approach to linear filtering and prediction problems. J. Basic Eng., 82:35-45, 1960.
4G. Evensen, Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo
methods to forecast error statistics. J. Geophys. Research, 99(C5), 1994.
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Ensemble Kalman Inversion - Setting Il

¢ A unifying mean-field perspective on the algorithm was very recently
derived by Stuart et al® in the limit of an infinite number of interacting
particles. This methodology can be used to study inverse problems,
opening up diverse applications beyond prediction in dynamical
systems.

¢ Analysis of the methodology, both in terms of accuracy and uncertainty
qguantification has been developed.

e Despite its widespread adoption in applications, a complete
mathematical theory is lacking and there are many opportunities for
analysis and applications in this area.

5Calvello, Edoardo, Sebastian Reich, and Andrew M. Stuart. 2025. “Ensemble Kalman
Methods: A Mean Field Perspective.” Acta Numerica. http://arxiv.org/abs/2209.11371.
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Iterative EKI

Conceptually, the idea of EKI is very simple. Just apply the standard EnKF to
an augmented system of state plus parameters, for a given number of
iterations, to invert for 6. We begin by pairing the parameter-to-data map
with a dynamical system for the parameter, and then employ techniques
from filtering to estimate the parameter given the data.

IDEA

Introduce a pseudo-time, and write down the augmented system

en—i-l = en
Ynt1 = G(0ni1) + Mo,

where the operator G contains both the system dynamics and the
observation function.

27



Mean-Field EKI

Consider the stochastic dynamical system

evolution: Opni1 =0, + Wnit, wWni1 ~N(0,%,), 9)
observation: Tptr1 = F(Oni1) + Vna1, Vi1 ~ N(0,%,). (10)
where
F0) = [9(99)] |

We seek the best Gaussian approximation of the posterior distribution of #
for ill-posed inverse problems, where the prior is a Gaussian, 6y ~ N (rg, ).

28



Convergence

Theorem (EKI Linear)

For a linear dynamic model, assume that the prior covariance matrix 3, = 0 and
initial covariance matrix Cy = 0. Then iteration for the conditional mean m,, and
covariance matrix C,, characterizing the distribution of 0,,|Y,, converges
exponentially fast to the posterior mean, my,., and covariance, Ci,qs;.

Theorem (EKI Near-Gaussian)
If the measure 1, is e-close to Gaussian, then

sup  dy(ptn, i, ) < Ce
0<n< N,

for bounded W, H, where d,, is a wieghted TV metric over measures .
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Conclusions and Perspectives



Conclusions

e Kalman-based inversion can be widely used to construct derivative-free
optimization and sampling methods for nonlinear inverse problems.

e Kalman-based inversion methods for Bayesian inference and UQ build
on the work in both optimization and sampling.

e They propose a new method for Bayesian inference based on filtering a
novel mean-field dynamical system subject to partial noisy
observations, and which depends on the law of its own filtering
distribution, together with application of the Kalman methodology.

e Theoretical guarantees are presented:

e for linear inverse problems, the mean and covariance obtained by the
method converge exponentially fast to the posterior mean and
covariance;

® for nonlinear inverse problems, numerical studies indicate the method
delivers an excellent approximation of the posterior distribution for
problems which are not too far from Gaussian. (proven 2024)
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Conclusions I

In terms of performance:

1. The methods are shown to be superior to existing coupling/transport
methods, collectively known as iterative Kalman methods.

2. Deterministic, such as ETKF, rather than stochastic implementations of
Kalman methodology are found to be favorable.
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Perspectives

¢ There are many open, interesting research questions both in theoretical
aspects and for implementations.

e In the framework of the NumPeX® PEPR, INRIA-MAKUTU team
proposes a PhD’ on EKI for large-scale problems in wave propagation.

¢ High performance computing will be performed using the MELISSA
framework of the INRIA-DATAMOVE?® team.

Shttps://numpex.org/
’https://jobs.inria.fr/public/classic/fr/offres/2024-07451

8https://www.inria.fr/en/datamove
32
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2 Books

A TOOLBOX FOR
Data Assimilation DIGITAL TWINS
Methods, Alqorithms, From Model-Based
and Applications to Data-Driven

uaAuQ-eIEQ 0} Paseg-[PPO woid
SNIMLTVLIDIA ¥O4 XOg100L V

Mark Asch

Marc Bocquet
Maélle Nodet

RV

HSY

E.

Source and Codes: https://markasch.github.io/DT-tbx-v1/,
https://github.com/markasch/DT-tbx-examples/,
https://github.com/markasch/kfBIPq
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